1. Alpert, R.L (1972) Calculation of Respone Time of Ceiling-Mounted Fire Detectors.
Fire Technology, Vol. 8, pp. 181-195.
2. Alpert, R.L (1975) Turbulent Ceiling Jet Induced by Large-Scale Fires.
Combustion Science and Technology, Vol. 11, No. 5-6, pp. 197-213.
3. Andoh, S, Yahaguchi, J, Muraoka, K, and Oka, Y (2013) Experimental Study on Temperature Property of Ceiling Jet Flowing Through the Accumulated Thin Smoke Layer.
J. Environ. Eng., AIJ, Vol. 78, No. 686, pp. 307-315.
4. Heskestad, G (1975) Physical Modeling for Fire. J. Fire and Flammability, Vol. 6, pp. 253-277.
5. Hurley, M.J (2015). SFPE Handbook of Fire Protection Engineering. 5th edition. Bethesda, Maryland: Springer, p 3-25.
6. Peacock, R.D, Forney, G.P, Reneke, P.A, Porter, R.M, and Jonesm, W.W (1993) CFAST:the Consolidated Model of Fire and Smoke Transport. National Institute of Standard and Technology, NIST TN 1299.
7. Suzuki, K (2012) Extending of Ceiling Jet Model to Unsteady Cased in Large Space.
J. Environ. Eng., AIJ, Vol. 77, No. 674, pp. 223-230.
8. Tanaka, T (1983) A Model Multi-room Fire Spread.
Fire Science and Technology, Vol. 3, No. 2, pp. 105-121.
9. Tanaka, T, and Yamada, S (2004) BRI2002:Two Layer Zone Smoke Transport Model - Chapter 1 Outline of the Mode -, J-Stage.
Fire Science and Technology, Vol. 23, No. 1, pp. 1-44.
10. Tanaka, T, Kwon, T.J, Son, B.S, Lee, H.P, and Lee, D.M (2009) Fire Dynamics for Performece based Design, Donghwa technology; Korea.
11. Zukoski, E.E (1994) Mass Flux In Fire Plumes.
Fire Safety Science, Vol. 4, pp. 137-147.
12. Zukoski, E.E, and Kubota, T (1980) Two Layer Modeling of Smoke Movement in Building Fires.
Fire and Materials, Vol. 4, No. 1, pp. 17-27.