J. Korean Soc. Hazard Mitig Search

CLOSE


J. Korean Soc. Hazard Mitig. > Volume 21(3); 2021 > Article
경로점을 가지는 해상풍력 석션버켓 기초의 기울기 제어 모형실험

Abstract

In offshore wind farms, tilting control based on a single-basket suction bucket foundation is a significant problem. In a single-basket suction bucket foundation, the tilting control of the foundation is possible by arranging the cells inside and controlling the pressure of each cell. However, the pressure of each cell must be finely controlled. Studies on this topic have been conducted, but no specific tilting control method has been developed. This paper presents experimental model results for tilting control obtained during the installation of a suction bucket foundation consisting of three internal cells. Tilting control was performed by independently controlling the internal pressure of each cell. A 1:100 scale model was used, and the ground condition was sandy. Four cases of tilting control tests for the model foundation were used with multiple combinations of internal positive, negative, or both pressures of each cell. It was found that the tilting control was within 5° during the installation and operation stages. There was a tilting control limit for operation based on the model with only negative pressure; therefore, 5° tilting control was achieved by combining the positive pressure.

요지

해상풍력단지개발에서 단일형 석션버켓 기초의 기울기 제어는 중요한 문제이다. 단일형 석션버켓 기초의 경우에는 내부에 격실을 마련하고 각 격실의 압력을 제어하는 것으로부터 기초의 기울기 제어가 가능하다. 단 각 격실의 압력은 미세하게 제어가 가능하여야 한다. 이에 대한 연구들이 수행되었으나 기울기 제어에 대한 방법론에 대해서는 구체적으로 언급이 되지 않고 있다. 본 연구에서는 3개의 내부격실을 둔 단일형 석션버켓 기초의 기울기 제어에 대한 모형실험을 실시하였다. 모형석션 기초의 기울기 제어를 위해서 격실내부압력을 각기 제어하여 실험을 수행하였다. 모형은 실제크기의 1:100으로 제작하였고 모래지반으로 수행하였다. 각 격실별로 부압 및 정압을 4가지로 조합하여 모형기초의 기울기 제어 실험을 수행하였다. 실험결과 시공 중 및 운용 중에 대해서 5°의 기울기 제어가 가능하였다. 운용중의 경우에는 부압만으로는 모형기초의 기울기 제어가 한계가 있어 정압을 조합하여 5°의 기울기 제어를 실현하였다.

1. 서 론

해상풍력발전기가 원활한 발전을 하기 위해서는 일정각도 이내의 기울기가 확보되어야 한다. 석션버켓 기초 형식은 기초하부가 단단한 암반층에 놓이지 않는다. 따라서 석션버켓 기초를 가지는 해상풍력 발전기는 조류력, 풍력, 파력 그리고 세굴 등에 의해 기울어질 수 있다. 우리나라의 경우 유럽과 달리 태풍과 같은 변수도 작용한다. 이를 극복하기 위해서는 설치단계나 운용단계에서 기울기를 보정하는 것이 중요하다. 특히 단일형 석션버켓 기초의 경우 내부에 격실을 두고 격실 내 압력을 제어하여 기울기를 보정하게 된다. 이 경우 각 격실에 부여하는 압력에 따라 기울기 보정이 이루어 질것이나 구체적으로 기울기보정을 위한 압력제어방법에 대해서는 구체적인 언급이 없는 형편이다.
Universal Foundation은 북해 Round 3에 대하여 단일형 석션버켓 기초에 대한 시험시공을 실시하였으며 수직도를 0.1° 미만으로 달성한 바 있다(Universal-foundation, 2014).
중국에서는 해상풍력 발전기용 단일형 석션버켓 기초에 내부격실을 적용하였으며 기초를 prestressed 콘크리트로 만든바 있다(Lian et al., 2011, Lian et al., 2012; Zhang et al., 2015). Zhang et al. (2016)에 따르면, 내부격실은 6각형이 모여있는 벌집형태를 가지며 실험은 Jiangsu성 풍력단지 예정지에서 가져온 실트질 모래로 지반을 조성하였다. 총 7개의 내부격실을 개별적으로 제어하였으나 최종 수직도는 명확하게 기술하지 않았다. 작은 기울기에 대해서는 부압을 통하여 조정하고, 큰 기울기에 대해서는 정압과 부압을 조합하여 제어를 완료하였다. 단일형 석션버켓 기초의 수직도에 대한 연구이나 구체적 절차가 언급되어 있지 않고, 격실별 정압⋅부압의 조합으로 인한 효과 등에 대해서도 자세하게 언급하지 않았다.
국내에서는 Kwag et al. (2012)은 군산항 앞바다에 단일형 석션버켓 기초를 시험 시공하였다. 단일형 석션버켓 기초를 최대 0.5° 이내의 오차로 설치가 완료하였다. 또한, Kim and Bae (2016)는 내부격실을 가지는 단일형 석션버켓 기초에 대한 기울기 보정방법을 제안하였다. 석션버켓 기초의 내부를 동일한 크기로 한가운데를 기준으로 방사형으로 3개 또는 4개의 격실로 나누고, 격실별 석션압을 제어하여 기울기를 제어하는 기술을 제안하였다. Kim et al. (2017)은 3개의 내부격실을 갖는 실내모형실험에서 시공중 1° 이상의 기울기 제어가 가능하였으며, 운용 중에는 0.25°의 기울기 제어가 가능한 것을 확인하였다. 운용단계에서는 정압을 부여하여야 큰 기울기 보정이 가능함을 밝혔다.
Kim et al. (2017)의 연구에서는 펌프구동압 제어문제로 임의 방위각을 가지는 단일형 석션버켓 기초의 실험을 수행하지 못하였고, 일방향 제어에 의한 기울기 제어의 실험이 수행되었다. 실험은 펌프구동압이 제어되지 못하여 보일링이 발생하는 문제가 있었다.
본 연구에서는 Kim et al. (2017)의 기존 연구를 보완하여 3개의 격실을 가지는 단일형 석션버켓 기초모형을 가지고 격실내부 압력을 각기 제어하여 기울기를 보정하는 실험연구를 수행하였다. 4개의 실험들은 초기에 동일한 경사각을 가지도록 하였고 이를 펌프구동에 의해 0.25° 이하가 되도록 하였으며, 기울어진 점이 내부격실위치에 상관없이 임의 방위각을 가지도록 배치하여 개별 격실내부에 부압과 정압을 조합하는 조건에서 해상풍력 발전기 시공단계 중 2가지와 운용 중 2가지에 대해서 기울기 보정실험을 수행하였다. 1개의 해상풍력기초의 경우는 수동에 의한 기울기 보정이 가능하다고 보여 지나, 해상풍력단지는 다수의 기초로 구성되며, 자동화를 위한 알고리즘 개발은 중요한 문제이다. 일련의 실험들은 동일한 방식에 의해 모형기초의 기울기 제어가 되도록 하였다. 동일한 알고리즘이 적용되는 경우에 단일형 석션버켓 기초로 이루어진 해상풍력단지 개발에 적용이 가능할 것으로 사료된다.

2. 실험방법 및 장비

본 연구에서는 Kim and Bae (2016)가 제안한 방법을 실험적으로 구현하였다. 이를 위해 Kim et al. (2017)의 시스템에서 문제가 되었던 펌프의 압력을 제어하기 위해 비례제어밸브를 추가 하였고, 임의 방위각으로 기울어진 모형석션버켓 기초를 기울기 보정하기 위해 총 6개의 펌프를 설치하였다. 펌프에 의한 격실 내 압력제어는 모형기초의 기울기를 미세하게 자세제어하기 위해서 필요하다. Kim et al. (2017)에서 사용한 펌프는 작은 용량이었으나 보일링이 일어나는 문제가 있었다. 따라서 압력을 제어하기 위해서 펌프자체의 속도를 저감하는 방법이 필요하였다. 채택된 펌프용량이 작아서 인버터와 같은 펌프속도에 맞는 속도제어기를 구하지 못하였다. 이에 따라 압력제어를 위하여 격실에 연결되는 호스 중간에 비례제어밸브를 채택하게 되었다. 비례제어밸브는 수백단계의 각도를 미세하게 제어가 가능하며 전압이나 전류 값을 입력하여 밸브의 여닫힘 제어가 가능하다. 본 실험에서 사용된 비례제어밸브는 전압제어 방식으로 0에서 5 V DC전압으로 밸브 폐쇄부터 완전개방까지를 제어할 수 있다. 본 실험에서는 제어기와 비례제어밸브간 거리가 상대적으로 멀지 않았기 때문에 제어가 쉬운 DC전압제어를 사용하였으나, 5 m 이상 거리가 먼 경우에는 전압강하 등에 의한 문제가 없는 전류 값으로도 제어가 가능한 제품을 사용하였다. Kim and Bae (2016)가 제안한 방법의 기본개념은 Fig. 1(a)와 같다. 그림에서 보는 바와 같이 각 격실의 압력을 제어하여 초기위치 pt4를 기울기원점(기울기 0°) pt0로 보내는 것으로 2번의 경로를 통하여 원점으로 보내게 된다. 여기에는 각 격실의 압력부여에 따라 3가지 방법이 있다. 우선 격실2번에 부압을 주면 pt1으로 보내고 다음 단계로 격실 2번 및 3번에 부압을 주어 pt0로 보내는 방법1, 격실3에 부압을 주어 pt2로 보낸 다음 격실 2에 부압을 주어 pt0로 보내는 방법2, 마지막으로 격실 2 및 3에 부압을 주어 pt3으로 보낸 다음 격실2에 부압을 주어 pt0로 보내는 방법3다. 이 3가지 방법 중에서 중간의 경로점 pt1, pt2, pt3와 최종위치 pt0와의 거리가 가장 짧은 쪽을 선택하는 것이 가장 효율적인 방법이다. 본 연구에서는 pt4(방위각 55°)에서 pt3를 거쳐 pt0로 보내는 방법(case 1)과 pt4의 대각선에 위치한다고 가정한(방위각 235°) pt5에서 pt0로 이동시키는 방법(case 2)에 대해 모형실험을 실시하였다(Fig. 1(b) 참조). 또한 해상풍력발전기가 운영중인 것으로 모사하기 위해 내부격실이 모래지반으로 채워져서 부압만으로는 기울기보정이 안 되는 것으로 가정하여 case 1과 case 2와 동일한 방위각 및 기울기에서 정압도 부여하는 방법(case 3, 4)에 대하여 실험을 실시하였다. Kim et al. (2017)에 의하면 3개의 격실 중 1개의 격실 만에도 내부에 모래지반으로 채워져 물로만 되어 있는 공간이 없는 경우는 더 이상 기울기 제어가 거의 되지 않았음을 확인한 바 있다. 초기 기울기각은 5°로 하였으며 방위각은 Fig. 1(b)에서와 같이 55° 및 235°에 대하여 실시하였다. 방위각 55°의 경우 위에서 언급한 격실 2와 3에 부압을 주는 경우(Fig. 1(c) 참조)가 가장 효율적이며 방위각 235°의 경우는 격실 1에 부압을 주는 방법(Fig. 1(d) 참조)이 가장 효율적이다.
Fig. 1
Basic Concept of Tilting Control Method
kosham-2021-21-3-125-g001.jpg
이와 같이 동일한 방식으로 자동화를 이루면 단일형 석션버켓 기초로 이루어진 해상풍력단지에서 일정각도 이상 기울어진 경우에 자동적으로 기울기가 보정 가능할 것으로 사료된다.
실험장비는 Fig. 2와 같이 모형토조, 모형기초 내부의 부압 및 정압을 부여하는 펌프, 모형석션버켓 기초, 펌프압을 제어하는 비례제어밸브, 레이저변위용 센서거치대, 데이터 수집장비 및 실시간데이터를 볼 수 있는 PC로 구성된다. 모형토조 제원은 내경 580 mm, 내측 높이 454 mm이며 두께 10 mm의 원형아크릴로 제작되었다. 데이터 수집장비는 레이저변위계 및 압력계를 계측할 수 있는 측정장비를 사용하였고 계측간격은 초당 2회로 하였다.
Fig. 2
Model Test System
kosham-2021-21-3-125-g002.jpg
모형석션버켓 기초는 두께 3 mm의 아크릴로 제작되었으며, 이의 제원은 Fig. 3(a)와 같이 지름 170 mm, 높이 130 mm이다. 내부격실은 두께 3 mm, 격실높이 78 mm로 모형석션버켓 벽체높이의 60%로 설치하였다. 모형석션버켓 기초는 원형(prototype) 구조물의 1:100의 크기로 제작되었다. 모형석션버켓 기초 내부에 격실 내부의 압력을 측정하는 압력계를 부착하였다(Figs. 3(b) and 3(e) 참조). 격실내부의 압력계는 간극수압의 측정을 위하여 격실내부에 있는 모래지반이 부압에 의하여 융기하여 격실내부천장에 있는 압력센서에 닿지 않도록 빈 공간을 두었으며 물만 유입이 되도록 가는 철망을 씌웠다. 사용된 압력계는 50 kPa의 압력까지를 측정할 수 있는 것으로 2 m 깊이의 수조에 물을 넣고 수위를 조절하여 실험에 사용된 모든 센서를 검정하여 사용하였다. 실험 중 변위는 연직변위 측정을 위하여 레이저변위계로 측정되었으며, 총 1개가 사용되었다. 모형기초의 중앙상부에 반사판을 설치하였고, 센서거치대에는 막대를 설치하고 막대 끝에 레이저변위계를 수직 Z축 방향으로 부착하였다(Figs. 3(a) and 3(c) 참조). 레이저변위계에는 변위값이 표시되며 운용중 단계인 실험 Case 3 및 Case 4에서 부압에 의해 연직변위가 더 이상 발생하지 않는 것을 확인하는 용도로 설치하였다(Fig. 3(d) 참조). 모형석션버켓 기초의 기울기 측정을 위해 경사계를 모형상부에 설치하였다. 경사계는 X, Y 2개축의 기울기를 각각 -40°~40°까지 측정가능하며, DC 전압으로 출력된다. 이를 Data logger에서 계측하고 다시 방위각 및 경사각을 계산하여 PC상에서 실시간으로 보여줄 수 있도록 하였다.
Fig. 3
Instrumented Model Suction Bucket
kosham-2021-21-3-125-g003.jpg
펌프는 일 방향으로만 구동되는 로터리식 펌프로 물이 한 방향으로만 들어가고 반대방향으로 물이 나오는 구조의 펌프이다. 펌프는 220 V AC로 구동되며 용량은 80 W이다. 사용된 펌프는 총 6개로 모든 격실에 각각 2개씩 연결되어, 격실별 제어를 하였다. 실험 case별로 각 격실별 압력이 부압인지 정압인지에 따라서, 사용되는 펌프가 다르게 하여 실험을 수행하였다.
모형석션버켓 기초는 30 mm까지는 수동으로 관입시켰으며, 이후 모형석션버켓의 매입깊이가 20 mm가 남겨질 때까지 각 격실에 부압을 작용시키면서 관입시켰다. 35 mm가 남겨진 이후에는 초기기울기를 부여하기 위해 각 격실별로 부압을 달리하였다. 마지막단계에서는 초기기울기를 모든 실험에서 동일하게 설정하기 위해 3개의 격실에 각기 다른 부압을 작동시키면서 X축으로부터 방위각 55°(또는 235°) 및 기울기가 5°가 되도록 기초상부를 강제변위를 부여하여 위치시켰다. 방위각 및 기울기는 컴퓨터화면에서 실시간으로 볼 수 있도록 하였다. Kim et al. (2017)에서는 펌프압의 크기를 제어하지 못하여 실재적인 기울기 모사가 어려워서 한쪽방향으로만 움직이게 하는 기울기 제어 실험을 실시한바 있다. 본 연구에서는 이러한 문제점을 개선하고자 펌프를 3개 추가하여 총 6개를 설치하였으며, 모든 펌프에는 비례제어밸브를 설치하여 컴퓨터프로그램으로 비례제어밸브의 여닫는 각도를 제어할 수 있도록 하여 임의 방위각을 가진 기울어진 모형석션버켓 기초의 수직도제어가 가능하도록 시스템을 개선하였다. 사용된 비례제어밸브는 600단계의 여닫힘 각도제어가 가능하다. 각 격실별로 부압펌프 1개 및 정압펌프 1개를 설치하였다. 실험조건은 설치단계에 대한 모사로서 모형석션버켓의 설치모사단계로 X축을 기준으로 55° 또는 235°의 방위각에 기울기 5°를 기준으로 하여 동일한 기초배치시 격실의 부압 및 정압제어를 실시하는 2가지 조건으로 하였다(case 1, 2). 또한 운전 중인 상태를 고려하되 앞의 조건과 동일한 방위각 55° 및 235°에 대한 2가지 실험을 실시하였다. 기초 설치시의 조건인 경우에는 격실내부에 물만 있는 공간이 있는 경우이고, 운전 중인 조건은 격실내부에 부압을 작용시켜도 모형석션버켓 기초가 움직이지 않는 경우로 가정하였다(case 3, 4). 이를 위해 3개의 격실중 적어도 하나의 격실에 모래지반으로 채워져서 부압을 가하여도 모형석션버켓이 움직이지 않아 기울기 제어가 안 되는 조건을 인위적으로 조성하였다. 따라서 운전 중인 경우에는 내부에 모래가 차있는 격실에 정압을 부여하여 인위적으로 내부공간을 만들면서 기울기를 제어하도록 하였다. 기울기 제어 실험케이스는 Table 1과 같다.
Table 1
Cases of Experiment
Test ID Initial azimuth (°) Pressure Control Simulation Phase
Case 1 55.3 step 1: Negative pressure on 2 cells,
step 2: Negative pressure on 1 cell
Under Construction
Case 2 234.7 step 1: Negative pressure on 1 cell,
step 2: Negative pressure on 2 cells
Case 3 55.1 step 1: Negative pressure on 2 cells,
 Positive pressure on 1 cell
step 2: Negative pressure on 1 cell
Under Operation
Case 4 235.1 step 1: Negative pressure on 1 cell,
 Positive pressure on 2 cells
step 2: Negative pressure on 2 cells
격실의 압력은 실험 시작 전 초기에 설정한 비례제어밸브의 열림정도를 결정하고 수행하였으며, 격실압력이 이웃격실로 전이되거나 보일링이 발생되는 경우에는 실험을 중단하였고, 비례제어밸브값을 수정하여 초기 압력을 다시 설정하였다. 또한 실험중간에 비례제어밸브를 미세하게 제어할 수 있도록 프로그램화 하였으며 PC에서 실시간으로 제어하여 기울기의 변화를 살펴가면서 기울기가 0.25 이하가 나올 때까지 제어하였다. 계측은 격실 내 압력 및 모형석션버켓의 최상단에 변위계를 설치하여 변위를 측정하였다. 사용된 지반은 모래이고 Kim et al. (2017)에서 수행한 실험과 동일한 모래를 사용하였으며 내부마찰각은 39.1°이었으며 상대밀도는 59%이었다. 모래지반조성은 강사기를 사용하였으며, 토조 하부에 관을 매설하여 물을 주입할 수 있도록 하였으며 지반조성 후 포화 시 지반의 교란이 최소가 되도록 하였다. 본 연구에서는 연구목적이 Kim et al. (2017)이 수행한 실험과의 연계 및 내부격실을 이용하여 기울기 제어 가능성을 판단하기 위한 것이기 때문에, 모래지반만을 대상으로 연구를 수행하였다. 각 격실 상부에는 부압용라인과 정압용라인, 초기 압입 시 발생되는 내압을 제거하기 위한 밸브가 같이 부착되어 있다. Kim et al. (2017)에서는 모형석션버켓 기초의 평형을 맞춘 상태로 기울기 제어 실험을 실시하였으나, 본 연구에서는 초기에 정해진 방위각 및 기울기를 확보하고자, 각 격실에 압력을 제어하면서 최종적으로는 수동으로 방위각 및 기울기를 조정하였다. 격실 내 모래가 다 차있는 공용 중 기울기 모사실험을 모사하기 위해서는 하나 또는 두 개의 격실에 다른 격실보다 큰 부압을 부여하여 보일링이 발생토록 유도하였다. 부압발생에 따른 추가적인 변위발생이 없는지를 상부에 설치된 레이저변위계의 수치를 보면서 초기 모형석션버켓 기초설치를 완료 하였다.

3. 실험결과 및 토의

실험결과를 제시한 그래프에서 측정된 격실내부 수압은 초기값을 0으로 설정하고 압력이 부여된 상태에 대한 상대 압력을 도시하였다. 경사계는 토조를 상부에서 바라볼 때 오른쪽이 X축으로 앞쪽을 Y축으로 정하였으며 방위각은 X축을 기준으로 반시계방향으로 정하였다. 경사계로 얻은 경사각은 실험 전 기초를 5°(±0.1° 이내)가 되도록 기울여 설정하였으며, 격실1에 설치된 상대압력 값은 P1으로 나머지 격실 2와 3의 상대압력은 P2와 P3으로 각각 표시하였다. 각 격실은 X축을 방위각 0°로 하여 방위각 120°까지가 격실 1, 그 다음 240°까지가 격실 2, 나머지 360°까지를 격실 3으로 하였다. 실험결과 그래프에 격실별 위치를 나타내는 모형석션버켓 기초의 평면도를 삽입하였다. 평면도에서 작은 점은 실험을 시작하기 전의 모형석션기초의 기울어진 위치이다. 둥근 원은 모형석션기초의 기울어진 경사각 5°를 뜻한다.

3.1 시공단계 기울기 제어 모사실험

3.1.1 2격실에 부압 적용한 기울기 제어 : Case 1

Case 1 실험은 Fig. 1(c)에서와 같이 3개의 격실 중 격실 2 및 3의 2개 격실에 부압을 작용시켜 모형 기초의 기울기를 보정하는 1단계 및 현 기울기 위치가 X축을 기준으로 방위각 0°에 이르면 2번 격실에 부압을 작용시켜 기울기가 0.25° 이하가 되도록 하는 2단계 실험이다. 격실내부의 수압변화와 모형석션버켓 기초의 경사각변화는 Fig. 4와 같다. Fig. 4에서 보는 바와 같이, 부압을 가한 격실에서 측정된 압력 P2 및 P3이 낮아졌으며, 아무런 압력을 가하지 않은 격실 1에서 측정된 압력 P1도 따라서 낮아 졌으나 그 값은 작았으며 보일링도 발생하지 않았다. 방위각이 0°에 가까워지면 비례제어밸브 열림 정도를 작게 하면서 격실 3 펌프를 정지시켰다. 그리고 격실 2에 연결된 펌프의 압력을 낮추기 위해 연결된 비례제어밸브의 열림 정도를 작게 조종하였으며 최종적으로 경사각은 0.25° 이하가 유지되어 기울기가 조정됨을 확인 하였다.
Fig. 4
Variations in Pressures of Internal Cells and Inclined Angle for Case 1
kosham-2021-21-3-125-g004.jpg

3.1.2 1격실에 부압 적용한 기울기 제어 : Case 2

Fig. 5는 실험결과 Case 2의 격실 내 압력변화와 경사각을 같이 도시한 그림이다. 2격실 부압 적용 조건인 Case 1과 마찬가지로 부압에 의해 경사각 변화가 발생하는 것을 확인하였으며 2개 격실에 부압이 적용된 Case 1보다 기울기보정시간이 길었다. Case 1과 마찬가지로 나머지 격실에 부압이 발생하였으나 값은 크지 않았다. Case 1과 마찬가지로 경로마다 비례제어밸브도 제어하였으며 최종적으로는 펌프를 정지시켰다. Case 2에서도 경사각 0.25° 이하로 제어가 가능함을 확인하였다.
Fig. 5
Variations in Pressures of Internal Cells and Inclined Angle for Case 2
kosham-2021-21-3-125-g005.jpg

3.2 시공완료 후 해상풍력 발전기 운용단계 모사실험

3.2.1 부압2격실 및 정압1격실에 적용한 기울기 제어 : Case 3

Case 3의 실험결과는 Fig. 6과 같다. Case 3에서는 격실 1이 모래로 차있기 때문에 격실내 부압 제어만으로는 기울기 제어각도가 제한된다. Kim et al. (2017)에 의하면 부압에 의해서는 0.25°의 기울기 보정이 가능하였다. 따라서 격실 안에 모래로 차있는 격실에 정압을 부여하여 격실 내 상부판과 모래지반상부와의 공간을 확보하면서 기울기를 제어하였다. 또한 반대편에 부압을 작용시켜 기울기가 빠르게 보정되도록 하였다. Case 3의 경우도 경사각 5°에 대한 기울기 제어가 가능함을 확인하였다.
Fig. 6
Variations in Pressures of Internal Cells and Inclined Angle of Case 3
kosham-2021-21-3-125-g006.jpg

3.2.2 부압1격실 및 정압2격실에 적용한 기울기 제어 : Case 4

시공완료 후 조건에 따라 사전에 격실 2 및 격실 3에 모래가 차도록 부압을 발생시켜둔 상태로 부압만으로는 기울기 제어가 안되기 때문에 격실 2 및 격실 3에 정압을 발생시키고 반대편 격실 1에는 부압을 부여하였다. Fig. 7 결과에 의하면 Case 3보다는 Case 4에서 기울기 보정시간이 단축되었는데, Case 3에서는 정압부여 격실이 1개 인데 비하여 Case 4에서는 정압부여 격실이 2개이기 때문으로 사료된다. Case 4에서도 기울기 0.25°로 달성 가능함을 확인하였다.
Fig. 7
Variations in Pressures of Internal Cells and Inclined Angle for Case 4
kosham-2021-21-3-125-g007.jpg

3.3 실험케이스별 모형석션버켓 기초의 최종 경사각과 도달시간

Table 2는 실험 중 경사각을 정리하였다. 시공 중 및 운용 중에 대한 4개의 실험들에서 설정된 초기 기울기가 5° 인 경우에 최종기울기가 0.25° 이하로의 기울기 보정이 가능함을 확인하였다. 또한, 방위각과 격실배치에 상관없이 임의각도로 기울어져도 격실에 부압과 정압을 부여하면 기울기 제어가 가능함을 확인 하였다. 운용중인 경우는 부압만으로 기울기 제어가 곤란함을 이전 실험연구에서 확인하였는바 이번 연구에서는 격실에 정압을 부여함으로서 기울기 제어가 가능함을 확인하였다.
Table 2
Final Results of Tilting Control
Test ID Pressure Control Initial Inclined Angle (°) Residual Inclined Angle (°) Elapsed Time (sec) Simulation Phase
Case 1 step 1: Negative pressure on 2 cells
step 2: Negative pressure on 1 cell
5.01 0.14 44.5 Under Construction
Case 2 step 1: Negative pressure on 1 cell
step 2: Negative pressure on 2 cells
5.05 0.19 47.0
Case 3 step 1: Negative pressure on 2 cells,
 Positive pressure on 1 cell
step 2: Negative pressure on 1 cell
5.07 0.11 29.5 Under Operation
Case 4 step 1: Negative pressure on 1 cell,
 Positive pressure on 2 cells
step 2: Negative pressure on 2 cells
4.94 0.21 24.5

4. 결 론

단일형 석션버켓 기초를 사용하는 해상풍력 발전기의 하부기초에 대하여 3개의 내부격실을 적용한 형식으로 임의 방향의 기울기 제어가 가능함을 확인하는 모형실험을 수행하였다. 각 격실에는 부압용 및 정압용 펌프를 각기 연결하였다. 또한 각 펌프에 비례제어밸브를 추가하여 압력을 제어하였다. 모래지반에서 원형(prototype) 구조물의 1:100 크기로 된 모형석션버켓을 이용한 4개의 실험결과로 부터 다음과 같은 결론을 얻었다.
  • 1. 내부격실 내 여유 공간이 있는 시공단계 중을 모사한 단일형 석션버켓 모형실험에서 초기 설정한 5°의 기울기 제어가 가능하였다. 단일형 석션버켓 기초에 3개의 내부격실을 둠으로서 격실내부압력변화로 부터 기울기 제어가 가능한 것을 확인하였다.

  • 2. 격실 내 상판이 지표면에 맞닿은 조건이 되는 경우로 가정한 운용단계실험에서 정압을 부여하여 내부에 공간을 확보하면서 이웃격실에 부압을 부여하면 기 설정된 5°의 기울기 제어가 가능함을 확인하였다. 3개 격실 모두에 여유 공간이 없는 경우도 기울기 제어가 가능할 것으로 사료되나 내부격실 모두에 정압을 부여하면 풍력발전기전체가 상승하게 되어 이에 대해서는 세심한 기울기 제어가 필요할 것으로 사료된다.

  • 3. 이전 연구에서 펌프압력을 제어하기 어려웠던 것에 비하여 본 연구에서는 비례제어밸브를 사용하여 압력을 기존실험에서보다 낮게 제어하여 격실내부의 압력이 이웃격실로 새어나가는 것을 방지 할 수 있었으며 이를 통하여 2단계 경로제어가 가능하였다. 다만, 동일한 압력제어가 매 실험마다 구현되지 않는 문제가 있었으며, 이를 극복하기 위해서는 모형축척을 보다 크게 할 필요가 있다고 사료된다.

  • 4. 해상풍력 발전기 기초에 단일형 석션버켓 기초가 적용되는 경우 시공단계에서 펌프속도를 제어하는 장치가 각 펌프별로 필요할 것으로 판단된다. 또한 발생된 압력을 알기 위해서는 설치단계별 격실 내 압력을 측정하는 것도 중요하다. 운용 시에는 일정깊이에서 유사한 압력만 제어하면 가능하기 때문에 상대적으로 간단한 제어방식을 사용하는 것도 가능할 것으로 사료된다. 다만, 실험결과와 같이 기울기 보정각이 큰 경우에는 격실 내 정압력도 부여해야 하는 문제가 있기 때문에 격실 내 공간확보를 위한 부양높이를 기울기 제어가 가능한 범위내로 제한할 필요가 있다.

  • 5. 단일형 석션버켓기초는 해상풍력단지 건설시 및 운용시 수직도의 유지가 중요하며, 이 경우 동일한 알고리즘을 가지는 수직도제어방법의 개발이 필요하다고 사료된다. 따라서 이를 자동화하기 위한 알고리즘의 개발이 선행되어야 할 것으로 판단된다. 본 연구에서는 기 개발된 알고리즘이 구현되는지를 실험적으로 규명하였다. 본 연구에서는 2단계 경로를 가지는 방법을 제안하였으나 정밀한 기울기 제어가 가능한 경우에 단일경로로 제어하는 방법도 가능할 것으로 사료된다.

  • 6. 본 연구에서는 격실매입깊이에 따른 상한 및 하한 압력을 결정하고 이에 맞는 압력을 부여하는 실험까지는 수행하지 못하였으며 향 후 보다 정밀한 자세제어기법 개발을 위해서는 상하한 압력도표를 적용한 알고리즘의 개발이 필요하다고 사료된다.

감사의 글

본 연구는 대우건설기술연구원의 연구과제비로 수행되었으며 이에 감사드립니다.

References

1. Kim, Y.S, and Bae, K.T (2016). Method For Correcting Perpendicularity Of Offshore Wind Power Facility With Single Suction Pile. Korean Patent No. 10-1692049, Seoul, Korea.

2. Kim, Y.S, Bae, K.T, Lee, J.P, Joung, J.W, and Choo, Y.W (2017) Model Tests for Tilting Control of Suction Bucket Foundation for Offshore Wind Turbine. Journal of the Korean Society of Hazard Mitigation, Vol. 17, No. 2, pp. 207-218.
crossref
3. Kwag, D, Choi, Y.S, Oh, M, Kwon, O, and Bang, S (2012) Design and Installation of Small-scale Monopod Suction Pile and Tripod Suction Buckets for Offshore Wind Farms. Proc. of 22nd Int. Offshore and Polar Eng. Conference, Rhodos, Greece: pp. 171-176.

4. Lian, J.J, Ding, H.Y, Zhang, P.Y, and Yu, R (2012) Design of Large-scale Prestressing Bucket Foundation for Offshore Wind Turbines. Trans. Tianjin Univ., Vol. 18, No. 2, pp. 79-184.
crossref pdf
5. Lian, J.J, Sun, L.Q, Zhang, J.F, and Wang, H.J (2011) Bearing Capacity and Technical Advantages of Hybrid Bucket Foundation of Offshore Wind Turbines. Trans. Tianjin Univ., Vol. 17, No. 2, pp. 132-137.
crossref pdf
6. Universal-foundation (2014). Trial Installation:UK North Sea. Retrieved Feb 26, 2021. from https://https://222821-www.web.tornado-node.net/wp-content/uploads/2019/03/Trial-Installation-case-study-2.pdf.

7. Zhang, P, Guo, Y, Liu, Y, and Ding, H (2016) Experimental Study on Installation of Hybrid Bucket Foundations for Offshore Wind Turbines in Silty Clay. Ocean Engineering, Vol. 114, pp. 87-100.
crossref
8. Zhang, P.Y, Han, Y.Q, Ding, H.Y, and Zhang, S.Y (2015) Field Experiments on Wet Tows of an Integrated Transportation and Installation Vessel with Two Bucket Foundations for Offshore Wind Turbines. Ocean Engineering., Vol. 108, pp. 769-777.
crossref


ABOUT
ARTICLE CATEGORY

Browse all articles >

BROWSE ARTICLES
AUTHOR INFORMATION
Editorial Office
1010 New Bldg., The Korea Science Technology Center, 22 Teheran-ro 7-gil(635-4 Yeoksam-dong), Gangnam-gu, Seoul 06130, Korea
Tel: +82-2-567-6311    Fax: +82-2-567-6313    E-mail: master@kosham.or.kr                

Copyright © 2024 by The Korean Society of Hazard Mitigation.

Developed in M2PI

Close layer
prev next