![]() |
A Study on Data Collection and Object Detection using Faster R-CNN for Application to Construction Site Safety
Daeseong Kim, Jungsik Kong, Jaehoon Lim, Byungchoon Sho
J. Korean Soc. Hazard Mitig. 2020;20(1):119-126. Published online 2020 Feb 29 DOI: https://doi.org/10.9798/KOSHAM.2020.20.1.119
|
Citations to this article as recorded by
CaSnLi-YOLO: construction site multi-target detection method based on improved YOLOv5s
Fei Hao, Tianqi Zhang, Guanghong He, Ruofei Dou, Chao Meng
Measurement Science and Technology.2024; 35(8): 085202. CrossRef Defect Detection in the Forging Process of Wheel Nut Products through Object Detection
Chang Dae Kim, Seung Wook Baek, Wan Jjin Chung, Chang Whan Lee
Journal of the Korean Society for Precision Engine.2024; 41(4): 279. CrossRef İnsan - endüstriyel mobil robot etkileşiminde güvenlik önlemlerinin boyutlandırılması için nesne tespit modeli geliştirme
Tarık Aslan, Mustafa Yagımlı
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi D.2024; 39(4): 2197. CrossRef Detection of Worker’s Safety Helmet and Mask and Identification of Worker Using Deeplearning
NaeJoung Kwak, DongJu Kim
Computers, Materials & Continua.2023; 75(1): 1671. CrossRef A Study on Prediction of Heating Positions using Faster R-CNN in Line Heating of a Steel Plate
Young-Soo Yang, Nguyen Truong Thinh, Kang-Yul Bae
Journal of the Korean Society of Manufacturing Pro.2023; 22(6): 1. CrossRef YOLO and Faster R-CNN object detection for smart Industry 4.0 and Industry 5.0: applications, challenges, and opportunities
Nitin Rane
SSRN Electronic Journal.2023;[Epub] CrossRef YOLO and Faster R-CNN Object Detection in Architecture, Engineering and Construction (AEC): Applications, Challenges, and Future Prospects
Nitin Rane, Saurabh Choudhary, Jayesh Rane
SSRN Electronic Journal.2023;[Epub] CrossRef
|