J. Korean Soc. Hazard Mitig Search

CLOSE


Search

  • HOME
  • Search
지반방재
Development of a Regression Model for Predicting Ground Subsidence Risk Using Machine Learning
Sungyeol Lee, Jinyoung Kim, Myeongsik Kong, Jaemo Kang
J. Korean Soc. Hazard Mitig. 2024;24(6):329-336.  Published online December 27, 2024
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
도시방재
Development of a Machine-learning-based Framework to Assess the Performance of Water Distribution Systems
Young Hwan Choi, Min Jun Kim, Teagyun Kim
J. Korean Soc. Hazard Mitig. 2024;24(5):49-61.  Published online October 28, 2024
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
풍수해방재
Predicting Damage Characteristics of Heavy Rain Disasters Using Artificial Neural Network
Youngseok Song, Hyeong Jun Lee, Jinjul Joo, Moojong Park
J. Korean Soc. Hazard Mitig. 2024;24(1):83-89.  Published online February 23, 2024
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
환경방재
Prediction of the DO Factor at Bugok Bridge, Oncheoncheon, Using Deep Learning
Heesung Lim, Hyunuk An, Jaenam Lee, Hyungjin Shin, Nagweon Choi, Jingul Joo
J. Korean Soc. Hazard Mitig. 2023;23(6):325-333.  Published online December 22, 2023
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
산지방재
Machine Learning for Big Data Analytics in Development of Wildfire Prediction Models
Chanjung Lee, Mooyoung Lim, Yohan Lee
J. Korean Soc. Hazard Mitig. 2023;23(2):29-39.  Published online April 27, 2023
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
건축물방재
Analytical Study on the Prediction of Fire Evacuation Time in Large Complex Buildings Using the Ensemble Learning Technique
DooHee Lee, HakKyung Kim, Jeon Soo Kim, Hyun Soo Hwang, DooChan Choi
J. Korean Soc. Hazard Mitig. 2022;22(5):9-17.  Published online October 27, 2022
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
지반방재
Comparison of Performance of Machine Learning Models for Predicting Compression Index Based on Clay Properties
Sung Yeol Lee, Jinyoung Kim, Jaemo Kang, Won Kin Baek, Hyeon Jun Yoon
J. Korean Soc. Hazard Mitig. 2022;22(4):127-134.  Published online August 26, 2022
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
Development of the Prediction Model for Saturated Hydraulic Conductivity of Soils Using Artificial Neural Networks
Jongmuk Won
J. Korean Soc. Hazard Mitig. 2022;22(3):179-185.  Published online June 27, 2022
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
소방방재
A Prediction Model of Casualties Based on Machine Learning for Selection of Fire Scenario
Donggoo Seo, Byunghun Park, Younghyun Lee, Wonhee Lee, Jungjae Kim, Hojun Song
J. Korean Soc. Hazard Mitig. 2021;21(5):165-173.  Published online October 27, 2021
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
하천방재
Flood Stage Forecasting at the Gurye-Gyo Station in Sumjin River Using LSTM-Based Deep Learning Models
Jaewon Jung, Hyelim Mo, Junhyeong Lee, Younghoon Yoo, Hung Soo Kim
J. Korean Soc. Hazard Mitig. 2021;21(3):193-201.  Published online June 25, 2021
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
환경방재
Performance Evaluation of Effective Drought Prediction Using Machine Learning
Kyosik Kim, Byunghyun Kim, Kun-Yeun Han
J. Korean Soc. Hazard Mitig. 2021;21(2):195-204.  Published online April 28, 2021
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
풍수해방재
Improvement of Regional Clustering Using Flood Control Characteristics and t-SNE of Machine Learning
Hongjun Joo, Jongseong Kim, Jaewon Kwak, Jongso Lee, Jaewon Jung, Hung Soo Kim
J. Korean Soc. Hazard Mitig. 2020;20(3):247-257.  Published online June 30, 2020
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
교통방재
Temperature Prediction of Anti-frost Layer using Machine Learning Techniques
Jaeho Son, Youngwon Seo, Youngmog Park, Gyutae Cho
J. Korean Soc. Hazard Mitig. 2020;20(1):9-17.  Published online February 29, 2020
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
풍수해방재
Developing a Prediction Model (Heavy Rain Damage Occurrence Probability) Based on Machine Learning
Jongsung Kim, Junhyeong Lee, Donghyun Kim, Changhyun Choi, Myungjin Lee, Hung Soo Kim
J. Korean Soc. Hazard Mitig. 2019;19(6):115-127. Special Issue  Published online November 30, 2019
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
건축물방재
Determination of Crack Signals Using the Deep Learning Technique Based on a 1D Convolutional Neural Network for Smart Detection of Structural Damage Cracking
Gyeol Han, Tae-Min Oh, Hyunwoo Kim, Ki-Il Song, Youngchul Kim, Tae-Hyuk Kwon
J. Korean Soc. Hazard Mitig. 2019;19(4):1-7.  Published online August 31, 2019
Full textFull text    PubreaderPubReader    ePubePub    PDFPDF    
  • KCI
  • GoogleScholar
  • Similarity Check
  • Crossref Cited-by Linking
  • ORCID


ABOUT
ARTICLE CATEGORY

Browse all articles >

BROWSE ARTICLES
AUTHOR INFORMATION
Editorial Office
1014 New Bldg., The Korea Science Technology Center, 22 Teheran-ro 7-gil(635-4 Yeoksam-dong), Gangnam-gu, Seoul 06130, Korea
Tel: +82-2-567-6311    Fax: +82-2-567-6313    E-mail: master@kosham.or.kr                

Copyright © 2025 by The Korean Society of Hazard Mitigation.

Developed in M2PI

Close layer
prev next